Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Stormwater ponds are common features in urbanized landscapes because they enhance flood reduction and nutrient retention. With shallow depths and high inputs of organic matter, these systems can be highly productive with rapid oxygen depletion when thermally stratified or ice‐covered. However, most of our understanding of the biogeochemistry of stormwater ponds comes from the open water period. We explored under‐ice oxygen dynamics in 20 stormwater ponds in Madison, WI (USA) that were ice covered from late December to early March to investigate the drivers of bottom water oxygen saturation and the impact on the accumulation of carbon dioxide (CO2) and methane (CH4). Winter anoxia was driven by ice transmissivity, winter nutrient concentrations, and precedent summer productivity. Oxygen depletion led to overall higher concentrations of greenhouse gases in pond surface waters. This research enhances our understanding of winter pond biogeochemistry and its links to summer productivity.more » « less
-
Abstract Multiple studies have reported widespread browning of Northern Hemisphere lakes. Most examples are from boreal lakes that have experienced limited human influence, and browning has alternatively been attributed to changes in atmospheric deposition, climate, and land use. To determine the extent and possible causes of browning across a more geographically diverse region, we examined watercolor and dissolved organic carbon (DOC) time series in hundreds of northeastern U.S. lakes. The majority of lakes have increased in both DOC and color, but there were neither coherent spatial patterns in trends nor relationships with previously reported drivers. Color trends were more variable than DOC trends, and DOC and color trends were not strongly correlated, indicating a cause other than or in addition to increased loading of terrestrial carbon. Browning may be pronounced in regions where climate and atmospheric deposition are dominant drivers but muted in more human‐dominated landscapes with a limited extent of organic soils where other disturbances predominate.more » « less
-
Abstract Growth of macroscale limnological research has been accompanied by an increase in secondary datasets compiled from multiple sources. We examined patterns of data availability in LAGOS‐NE, a dataset derived from 87 sources, to identify biases in availability of lake water quality data and to consider how such biases might affect perceived patterns at a subcontinental scale. Of eight common water quality parameters, variables indicative of trophic state (Secchi, chlorophyll, and total P) were most abundant in terms of total observations, lakes sampled, and long‐term records, whereas carbon variables (true color and dissolved organic carbon) were scarcest. Most data were collected during summer from larger (≥ 20 ha) lakes over 1–3 yr. Approximately 80% of data for each variable is derived from ~ 20% of sampled lakes. Long‐term (≥ 20 yr) records were rare and spatially clustered. Data availability is linked to major management challenges (eutrophication and acid rain), citizen science, and a few programs that quantify C and N variables. Resampling exercises suggested that correcting for the surface area sampling bias did not substantially change statistical distributions of the eight variables. Further, estimating a lake's long‐term median Secchi, chlorophyll, and total P using average record lengths had high uncertainty, but modest increases in sample size to > 5 yr yielded estimates with manageable error. Although the specific nature of sampling biases may vary among regions, we expect that they are widespread. Thus, large integrated datasets can and should be used to identify tendencies in how lakes are studied and to address these biases as part broad‐scale limnological investigations.more » « less
An official website of the United States government
